
PHYS4031 STATISTICAL MECHANICS

SAMPLE QUESTIONS FOR DISCUSSION IN WEEK 7 (19 October 2016) and Week 8 EXER-
CISE CLASSES (24 October 2016)
You may want to think about it before attending exercise class.
SQ17: Doing all of statistical physics using the microcanonical ensemble and the most probable distribution -
The case of classical particles
SQ18: Evaluating z for classical particles again - (a) integral treated by spherical coordinates and (b) integrating
over energies of single-particle states

SQ17 (Related to Problem 4.4) Doing statistical physics of classical particles using the microcanon-
ical ensemble and the most probable distribution

In Ch.VII, we counted the number of microstates for a given distribution {ni} for fermions and for bosons.
In the classical limit where ni � gi in every cell i, which is realized when we don’t have that many particles
in the system (dilute limit) or the temperature is high that many single-particle states become available for
occupation (the high-temperature limit), both microstate numbers WFD and WBE approach the same form
of Wclassical given by

Wclassical({ni}) =
∏

i

gni

i

ni!
(1)

where the subscript stresses that it is the “classical” particle limit or the Maxwell-Boltzmann limit. [Recall:
All particles are either fermions or bosons formally.] The procedure is then to maximize Wclassical or
lnWclassical under the constraints of a fixed number N (thus N =

∑

i ni) of such classical particles with a
fixed total energy E (thus E =

∑

i niεi). The result is the most probable distribution {ni} and it follows
that W (mp) is also known. Details are given in class notes.

Back to Ch.III, we emphasized that the most probable distribution W (mp) dominates all the other distri-
butions and thus S = k lnW can be very accurately approximated by S = k lnW (mp). Here, we illustrate
that one can work out all the physics starting from W (mp). [In Problem 4.4, you will work out the physics
of bosons in a similar way.]

Using the result of ni after applying the Lagrange multiplier methods, show that the entropy is given by

Sclassical =
E

T
+Nk

[

1 + ln

(∑

i gie
−εi/kT

N

)]

(2)

This is a general expression. Starting with the entropy S(E, V,N) with V hidden in the single-particle
energies, everything can be found.

In particular, obtain an expression for the Helmholtz free energy Fclassical = E − TSclassical. Hence, show
that the result can be written as:

F = −kT lnZclassical (3)

such that

Zclassical =
zN

N !
, (4)

and identify an expression for the single-particle partition function z.

Important Remarks: What we did here is to start with the mircocanonical ensemble approach,
find the most probable distribution and then get at the general expressions for canonical
ensemble approach, for the case of classical non-interacting indistinguishable particles. It is a
short cut in doing statistical mechanics. It is a very practical approach. Some undergraduate
textbooks introduce this approach only. However, the method begins with single-particle
states and therefore is applicable only to non-interacting particles. Our canonical ensemble
formalism (Ch.V and Ch.VI) is general and can be applied even to interacting N-particle
systems.
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SQ18 Single-particle partition function for a free non-relativistic particle - Again!

You should have calculated this quantity twice before in Problem Sets. The single-particle partition function
for a free non-relativistic particle is given by (see Problem Set 1 and Set 3, Ch.VII classical limit or SQ17)

z =
∑

all cells i

gi e
−βεi (5)

=
∑

all s.p. states i

e−βεi (6)

where the sum in Eq. (5) is over the cells labelled i where there are gi s.p. states (single-particle states) in
the cell i, and the sum in Eq. (6) is over all single- particle states one-by-one.

We can evaluate z by turning the sum into an integral in the phase space (6-dimension) of a single particle
and the end result is (you did it before)

z =
1

h3

∫

d3x

∫

d3p e−
p2x+p2y+p2z

2mkT =
V

λ3
th

(7)

where λth = h/
√
2πmkT is the thermal de Broglie wavelength. Previously, you did the integrals in Cartesian

coordinates, i.e., integrated over px, py and pz.

Here, TA will illustrate that z can be evaluated in other ways. The result, of course, will be the same.

(a) Noting that the integrand in Eq. (7) is actually e−p2/2m, where p2 is the magnitude of the momen-
tum squared, it is spherically symmetrical, i.e., the integrand takes on the same value for different
(px, py, py) with the same |p|. Therefore, we could also carry out the integral

∫

d3p (· · · ) by spherical
coordinates. Do it and show that the same result pops out, as it should be.

(b) Let’s inspect Eq. (5) again. The sum can also be done by classifying the single-particle states according
to their energies. Turning the discrete version of Eq. (5) into a continuum version, we introduce the
quantity g(ε) (called the single-particle density of states, see Ch.VIII) such that g(ε) dε is the number
of s.p. states in the interval ε to ε + dε. Using g(ε) dε, the single-particle partition function can be
written as

z =
∑

all cells i

gi e
−βεi =

∫

∞

0

g(ε) e−βε dε =

∫

∞

0

g(ε) e−ε/kT dε . (8)

Here, the lower end of the single-particle spectrum is taken to be zero.

Very soon (in Ch.VIII), we will show that for non-interacting particles in 3D, the density of states is
given by

g(ε) =
V

4π2

(

2m

~2

)3/2

ε1/2 . (9)

Here, the spin degeneracy Gs = 2s + 1 is ignored. TA: Evaluate z by integrating over ε. You may
make use of Γ functions.
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